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Can biomaterial engineering improve
Immunotherapies?

To deliver d
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Early attempts: Using iImmune regulatory signals as
Immunotherapies
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http://www.fightcancerwithimmunotherapy.com/ImmunotherapyAndCancer/StateOfCancerlmmunotherapy



IL-2 and interferon-a. two critical signals for anti-

tumor Immunity; the first cytokine drugs

IL-2

Boyman, O., & Sprent, J. (2012) Nature
Reviews Immunology, 12(3), 180-190.
http://doi.org/10.1038/nri3156

IFN-a

Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M.

J., & Kroemer, G. (2015) Nature Reviews
Immunology, 15(7), 405-414.
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The good and bad of systemic cytokine
administration

Stage IV melanoma patients
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Current Opinion in Chemical Biology

‘high dose” IL-2 promotes long term complete
responses in 5-10% of melanoma and renal cell

* Accompanied by serious toxicities
* Known to expand regulatory T-cells

http://doi.org/10.1016/j.cbpa.2014.09.006
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Baluna, R., & Vitetta, E. S. (1997). Immunopharmacology, 37(2-3), 117-132.



How about using tumor-targeted antibody?

full-length IgG
|

. .
* Anti-TA99 Ab targets % positive cells

tumor well as expected
* However, IL-2-Ab fusion

protein behaved very different blood
from the Ab alone spleen
* Likely, the fusion IL-2 still
target IL-2 receptors
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Tzeng, A., Kwan, B. H., Opel, C. F., Navaratna, T., & Wittrup, K. D. (2015).
Proceedings of the National Academy of Sciences, 112(11), 3320-3325.



Does intra-tumoral injection help?

In humans with head and neck cancer:
PK parameters for intratumoral IL-12:

local Injections 7

Week 1 (n = 3) Week 6 (n = 2)
C,..x (pg/ml) 362 (74.7) 763 (62.2)
OCdal retention T o 0 050
t,» (h) 6.8 (0.1) 5.1(04)
AUC (pg X h/ml) 4361 (1199) 6045 (2068)
120+
100

80+

60+

IFN-y (pg/mi)

40

20

1 T T

o 12 24 36 48

time after IL-12 i.1. (hours}, in week 1

van Herpen, Huijbens, R., Looman, M., & de
L Vries, J. (2003). Clin. Cancer Res,
https://theodora.com/rodent_laboratory/injections.html ries, J. (2003). Clin. Cancer Res



A possible solution: Nanoparticle (NP) immune agonists
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Anti-CD137 (4-1BB)

liposomes

liposomal

iImmunostimulators
~150 nm

CD137 (41BB) = costimulatory
receptor
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Kwong, B., Gai, S. A, Elkhader, J., Wittrup, K. D., &
Irvine, D. J. (2013). Cancer Research, 73(5), 1547—
1558. 8



Intratumoral NP Injection confines immunostimulators to the
tumor and draining lymph nodes wy Solon Proxmaltn Dy MMUnOliposomes also
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Tumor-localized immune agonists can be
effective and safe. How do we then target
Immune agonists to metastatic tumors?

* Passive targeting
» Enhanced permeation and retention
(EPR) effect in tumors
* Active targeting
» Antibody-based targeting



EPR effect is driven by size and circulation time
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Strategy 1: long half-life antibody-sized
agonists for EPR-based accumulation
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Anti-CD137 and IL-2-Fc
combination immunotherapy
effectively arrests tumor
growth, but elicits lethal in
vivo toxicity.
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Nature Communications, volume 9, Article number: 6(2018)
doi:10.1038/s41467-017-02251-3
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Hypothesis: toxicity of cytokines is caused by stimulation of
circulating immune cells (and possibly endothelial cells)
How to test this hypothesis?

d IFNy IL6
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Hypothesis: toxicity of cytokines is caused by stimulation of

circulating immune cells (and possibly endothelia

How to test this hypothesis?

Relative lymphocyte count

FTY720 to deplete
circulating lymphocytes
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Strategy 2: nanoparticle-agonists for EPR-
based accumulation (systemic delivery)

Tumor tissue

IL-2-Fc liposomes

®

Injected dose

-~ |[L-2-Fc
-# Lipo-IL-2-Fc
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Pharmacokinetics of
the labeled proteins
were followed over

time in the blood

Untreated
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Liposome-anchored anti-CD137 and IL-
2-Fc rapidly accumulate in

tumors. a, b Groups of C57BI/6 mice
(n=3/group) were inoculated with

5 x 10° B16F10 tumor cells on day 0, and
received i.v. injections of Alexa-568-
labeled aCD137 and IL-2-Fc, Lipo-
aCD137 + Lipo-IL2-Fc, IL-2-Fc alone, or
Lipo-IL-2-Fc alone on day 10. One hour
later, tumors were collected, and frozen
sections were stained for CD31 a?Gd DAPI
and imaged by confocal microscopy.



Strategy 2: nanoparticle-agonists for EPR-based
accumulation (systemic delivery)
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Checkpoint Inhibitors

Lymph node
T cell
TCR CD28 CTLA-4
Anti-CTLA-4
MHC B7 (Ipilimumab)
L
Signal 1 Signal 2
Dendritic
cell

Science 23 Mar 2018:
Vol. 359, Issue 6382, pp. 1350-1355
DOI: 10.1126/science.aar4060

‘ Tumor

Via bloodstream /

T cell
Anti-PD-1
(Pembrolizumab,
Nivolumab)
|
TCR PD-1
MHC
Anti-PD-L1 -
(Atezolizumab,
Avelumab,
Durvalumab)
Cancer cell
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Ipilimumab

(June 2000 )
Nivolumab
First patient dosed
@ First FDA approvals
for indication
I | ! |
2000 2006 2008

Science 23 Mar 2018:
Vol. 359, Issue 6382, pp. 1350-1355
DOI: 10.1126/science.aar4060
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Not without toxicities:

30
% 25— Grade 1-2 in light colours and grade 3-5 in darker colours
)
£ - Ipilimumab + i ;
= 0o Ipilimumab Nivolumab - Nivolumab Pembrolizumab
5
a
o
= 15
< This part is not required.
g
S 10-
(O]
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g 27
2
Hyperthyroidism

Increased ALT ' Colitis Hypophysitis Hypothyroidism Pneumonitis
Figure 3 | Adverse events of special interest noted with immune-checkpoint inhibitors. These adverse events are
adirect result of activation of the immune system, as reported in patients treated with ipilimumab, pembrolizumab,
nivolumab or ipilimumab plus nivolumab. Incidence per 1,000 person-months; these incidences include data from the
following studies: CA-184-002 (REF. 16), KEYNOTE-001 (REF. 30), KEYNOTE-001 (randomized cohorts®!), KEYNOTE-002
(REF. 32), KEYNOTE-006 (REF. 33), CheckMate-037 (REF. 100), CheckMate-066 (REF. 29), CheckMate-067 (REF. 45), and

CheckMate-069 (REF. 44).

Di Giacomo, A. M., Biagioli, M., & Maio, M. (2010).
Seminars in Oncology, 37(5), 499-507.

http://doi.org/10.1053/j.seminoncol.2010.09.007 20



A looming challenge in cancer immunotherapy:

balancing immunity and toxicity

Clinical Mechanisms of relative
evaluation tumor immunity and toxicity
QUJ//
CTLA4 t__ﬁ/% Ipilimumab P Response Toxicity
“ OR: 19% Grade 3-4: 23%
Tumor
effector PD-1 Lambrolizumab
7 N _ >—> tResponse
NS Nivolumab
N= } Toxicity
CTLA-4
4 »
= N Combination
pD-1 ! (\ therapy » 271 tResponse $ 4 Toxicity
OR: ~50% Grade 3-4: 53%

Nat. Med. 19, 1100-1101 (2013)
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How to better deliver checkpoint blockade
antibodies tumors?

* Local delivery

* Systemic delivery



Hydrogel for deliverer of checkpoint blockade
antibodies EFFECTOF WATER

A hydrogel is a network of polymer chains that are hydrophilic,
sometimes found as a colloidal gel in which water is the

dispersion medium. Hydrogels are highly absorbent (they can - o |
contain over 90% water) natural or synthetic polymelr o

Hydrogel Kl-lydirm °
- - \ /

Super Absorbent Polymer o
for Diapers 13

{. " ' o

: Drug diffusion from the

core through the hydrogel
membrane

ONCOIMMUNOLOGY
2016, VOL. 5, NO. 2, e1074374 (12 pages)
http://dx.doi.org/10.1080/2162402X.2015.1074374
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How to better control the drug release?

CpG encoded
template

'S
&“g szioflm -

"fapm
Cargo: anti-PD1 antibody (aPD1)

CpG DNANano-cocoon (DNC)

Carrier: DNC

An enzyme that can degrade the carrier
(DNC) to release aPD1
Restriction enzyme

Caged enzyme by TGMS

* Triglycerol monostearate (TGMS) is an
amphiphile.

* TGMS can be degraded by esterases
and matrix metalloproteinases (MMPs)
that are highly expressed at the wound
sites for developmental tissue
remodeling.

Adv Mater. 2016 Oct; 28(40): 8912-8920.
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and release of aPD1

@ Tumour cell
Tcell
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https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=27558441

Drug release in response to inflammation conditions

L 4

Inflammation- tnggedf s 3 ""\
fragmentation "g | e

CpG DNAnano-cocoon (DNC) CpGODN aPD1

A

— © Tumourcell
- Dendritidcell ¥ ' Tesl Activated T cell Cancer cell el
* CpG oligodeoxynucleotides (CpG ODNSs) trigger cells that express
Toll-like receptor 9, including human plasmacytoid dendritic cells
Y A (pDCs), have potent iImmunostimulatory effects and can enhance

100 1000

the anti-cancer activity of a variety of cancer treatments.
Aia o Size(d.nm)

* Through an enzymatic rolling circle amplification method specifically
A) TEM |mag|ng of Hhal- TGMS DNCS aPD1 nanocomp03|tes based on a template encoded with the CpG sequence, the carrier

nm). o long-chain single-stranded DNA (ssDNA).
B) Dynamic light scattering characterization of

Hhal-TGMS-DNCs-aPD1 nanocomposites. 25



n G1, PBS control; G2, Hhal-TGMS-DNCs; G3, Hhal-TGMS-cDNCs-aPD1; G4,
Efflca Cy 5 free aPD1/free CpG nucleotides; G5, Hhal-TGMS-DNCs-aPD1

G1 G2 G3 G4 G5

against
B16F10
Mmouse
melanoma

B

DAY 18 DAY 14

DAY 22

Tumour volum(

Bioluminescenttumor cell signal
Photons s~' cm -2 sr ! (X 10)
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3 R Time (Nav)

In vivo tumor therapy to reduce postsurgical tumor relapse via CpG DNC delivery system.

A) In vivo bioluminescence imaging of the B16F10 tumors of the different groups after removal of primary tumor.

B) B) Quantified tumor signals and C) mean tumor growth of different groups of mice after various treatments indicated.
Pie chart shows percent complete response rate (orange) (n7 = 10). The black arrow indicates the surgery time. -,



G1, PBS control; G2, Hhal-TGMS-DNCs; G3, Hhal-TGMS-cDNCs-aPD1; G4,

SyStem |C Efflca Cy? free aPD1/free CpG nucleotides; G5, Hhal-TGMS-DNCs-aPD1

A G1 G2 G3 G4 G5

Systemic antitumor efficacy could be
obtained by the local injection of DNC
delivery system at the surgical site.
A) In vivo bioluminescence imaging of
the B16F10 metastasis of different
groups after removing of primary
tumors at different time points.
B) Quantified tumor signals according to B
A. Every line represents one animal
and each dot shows the whole animal
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Any other technologies?

Top 10 Images
Aaans [2015

These spikes may look fearsome, but they
are shorter than the thickness of a credit
card, causing no more pain than a
mosquito bite when applied to the skin,
according to researchers. Once there, the
needles deliver insulin in response to
changes in blood sugar levels. Some day,
such needles—which are attached to a
patch the size of a penny—may spare
diabetic patients from having to inject
themselves with insulin.

Prof. Zhen Gu
(UCLA/Zhejiang Univ)

http://www.sciencemag.org/news/2015/12/top-10-images-2015 28



Microneedles enhance checkpoint
blockade antibody therapy
a)

* Each MN is composed of biocompatible N\
hyaluronic acid (HA) / e —
* MN is integrated with pH-sensitive dextran m-HA
nanoparticles (NPs)
* NP encapsulate aPD1 and glucose oxidase Epidermis
(GOx) Dermis
* GOx is applied to convert blood glucose to
gluconic acid in the presence of oxygen (O,). Subciltaneotis tissile melanoma
* Catalase (CAT) assists glucose oxidation by \
generation of O, and helps consume aPD1 S
undesired hydrogen peroxide (H,O,) g .- dexiran
il
glucose oxidase (GOx) converts dissociation j
blood glucose to gllltizzf)n|c acid \ 4 y
glucose + O, 4+ H,(» — gluconic acid + H,0, alginate s

pH-sensitive dextran NPs
Nano Lett. 2016, 16, 2334—2340



Microneedles enhance checkpoint

blockade antiboday therap

Characterization of aPD1 loaded e -
microneedles. § £ .8
(a) SEM image of NPs (scale bar: 100 nm). 3 g‘
(b) The average hydrodynamic sizes ‘ § 10
determined by DLS. (c) SEM image of £
MN patch (scale bar: 200 um). 54

(d) Higher magnification of SEM imaging of

MN apex confirmed that the MN was
loaded with NPs (scale bar: 5 um).

(e) Fluorescence imaging of a
representative MN patch that contained
FITC-antibody loaded NPs (scale bar: 200
m).

(f) Mechanical property of the MN. The
failure force for desired MN was
quantitatively measured as 0.38 N/needle.

Nano Lett. 2016, 16, 2334—2340
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1 mm 200 pm 200 pm
In vivo anti skin cancer treatment of aPD1 delivered by MNs.
(a) Mouse dorsum and relevant skin (the area within the red dashed line) was transcutaneously treated with a MN patch (left), with
the image of the trypan blue staining showing the penetration of MN patch into the mouse skin (right) (scale bar: 1 mm).
(b) H&E-stained section of cross-sectional mouse skin area penetrated by one MN (scale bar: 200 um).
(c) Merged fluorescence and bright field image of the mouse skin penetrated by FITC-antibody loaded MNs (green: aPD1) (scale bar:

200 um).

gmﬂ'«r Glucose w/ GOx I
T o8l Glucose wio GOx

In vitro accumulated aPD1 release from the MN E

patches incubated in 100 mg/dL glucose solution at € o0

37 °C over time. The error bars are based on the g 4

standard deviation (SD) of the samples (n = 3). % 20
T 9

31
Nano Lett. 2016, 16, 2334—2340 Time (h)



d)

Efficacy against B16F10
mouse melanoma

16F10-luc cancer cells were subcutaneously implanted in the rear
dorsal area of female C57BL/6 mice. After the tumor sizes reached
about 50-60 mm?3, MN patch were administered by a single local
administration onto the tumor site (the area of patch was larger
than tumor site).

In vivo anti skin cancer treatment of aPD1 delivered by MNs. g) -
(d) In vivo bioluminescence imaging of the B16F10 tumors of Oou-,
different groups indicated (1, untreated; 2, MN-GOx; 3, free aPD1; &
4, MN-aPD1; 5, MN-GOx-aPD1). The error bars are based on the g
standard deviation (SD) of three mice. =
(e) Quantified tumor signals according to d.

(f) Kaplan—Meier survival curves for the treated and the control é
mice. Shown are eight mice per treatment group. =
(g) Immunofluorescence staining of tumors treated with MN - L%

GOx-aPD1 or free aPD1 at different time points (green: aPD1,

blue: nucleus) (scale bar: 100 um). Dey0
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I " “ ne Co-delivery of anti-PD-1 with

o 1M1 4 aPD1 Bl 1-methyl-DL-tryptophan (1-
| &~ & M) an inhibitor of

1770 1001600 iImmunosuppressive enzyme

iIndoleamine 2,3-dioxygenase

(IDO)

& Treg cell

g
2
é

@) Tcell

' Melanoma

IDO Blockade £2MIN3MON oy 4 Blockade 110 1001000
Diameter (nm) . . .
Hyaluronic acid (HA; conjugate base

= w/ HAase < w/ HAase hyaluronate), also called hyaluronan, is an
{ = w/o HAase =« wlo HAase .. ]

anionic, nonsulfated glycosaminoglycan
distributed widely throughout connective,
epithelial, and neural tissues.

-
o
o

o)
@
(=]

o
@
=]

Released aPD1 (%)
B

Released 1-MT (%)
S

N
[
<

o

o

ACS Nano 10, 8956-8963 (2016). 33




How do we target checkpoint inhibitors to tumors

: ” FIG. 1.-The morphology of the multivesicular
SyStem ICa y? membranous sac and the stage after vesicle release in

human platelets attached to coronary arterial wall.
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https://www.allaboutcircuits.com/news/engineering-inspired -
by-nature-janus-particles-and-self-healing-circuitry/
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Hijacking platelets for checkpoint inhibitor
delivery for post surgery s s

Chemically Platelet
conjugate anti- v
PD-1 to Platelet

o S
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i.v.injection

P-aPDL1 Activated P-aPDL1 PMPs-aPDL1

Nature Biomedical Engineering 1, Article number: 0011 (2017), 35

doi:10.1038/s41551-016-0011



Supplementary Figure S5. Transmission electron microscopy (TEM) of P-aPDL1 after activation.
(a) Platelet microparticles (PMPs) shed from activated platelets. (b) A number of PMPs can be
found under TEM after P-aPDL1 activation. Size bars, 100 nm in Figure S5a and 2 um in Figure

S5b.
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‘Smart’ antibodies?

The concept of Parental antibody

“probody (PB)”
proteases —* } J’)
\

Substrate linker Masking peptide

http://cytomx.com/probody-therapeutics/
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The concept of “probody (PB)

(A) Cartoon model of a Probody showing the
masking peptide (red), substrate linker (green),
flexible peptide linkers (gray lines), and |gG
(gray ellipses). The left Fab arm represents the
Intact Probody form with the masking peptide
tethered and bound in the antigen-combining
site, whereas the right Fab arm represents an
activated Probody from which the masking
peptide has dissociated.

-
|

(C) Intact PB1 shows decreased binding to
—e— Cetuximab iImmobilized EGFR by ELISA, whereas digestion
—o— PB1 of PB1 with uPA protease (Activated PB1)
—a— Activated PB1 | osiores binding comparable to cetuximab.
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Sci. Transl. Med. 5, 207ral44 (2013). 40



The efficacy of “probody (PB)’

This slide is not required.

A  Cetuximab PB1 PB-NSUB

e PB1 inhibits tumor growth in xenograft models.
@ .
’ 1000
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—e— \/ehicle 1 '
800 —e— PB-NSUB b Vehicle

—es— PB1
—e— Cetuximab

—— 4 PB-NSUB

400 —

Optical imaging of H292 xenograft tumor—bearing mice 48
hours after intraperitoneal administration of Alexa750-
conjugated PB1, cetuximab, and noncleavable Probody
(PB-NSUB). n = 3 mice per group were injected with
fluorescent conjugate. A high-intensity fluorescent signal 0 1 . I l . |

Mean tumor volume (mm3)

N

o

o
|

PB1
Cetuximab

0 5 10 15 20 25 30

was detected only in the tumors of mice dosed with PB1 or i
ime (day)

cetuximab, suggesting that PB1 was activated and
accumulated in the tumor through EGFR binding. 4



Immunotherapy In combination with photothermal

therapy (PTT)
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Indocyanine green (ICG), a photothermal agent,
imiquimod (R837), a Toll-like-receptor-7 agonist

co-encapsulated by poly(lactic-co-glycolic) acid
(PLGA) to form the nanoparticle
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Immunotherapy In combination with photothermal

therapy (PTT)
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